

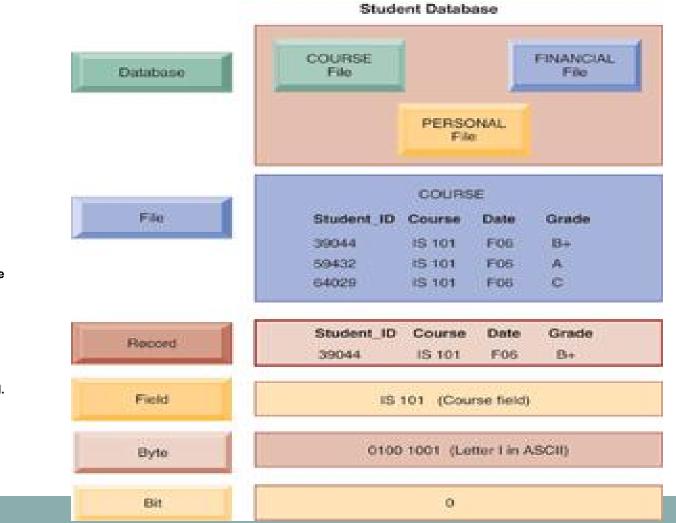
Organizing Data in a Traditional File Environment

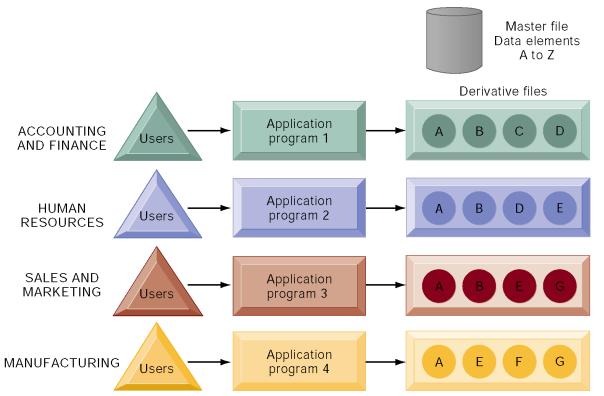
"File organization concepts

- ["] Computer system organizes data in a hierarchy
 - " Field: Group of characters as word(s) or number
 - " Record: Group of related fields
 - " File: Group of records of same type
 - " Database: Group of related files
- " Record: Describes an entity
- *Entity*: Person, place, thing on which we store information
 - ["] Attribute: Each characteristic, or quality, describing entity
 - " E.g., Attributes **Date** or **Grade** belong to entity **COURSE**

Organizing Data in a Traditional File Environment

The Data Hierarchy




Figure 6-1

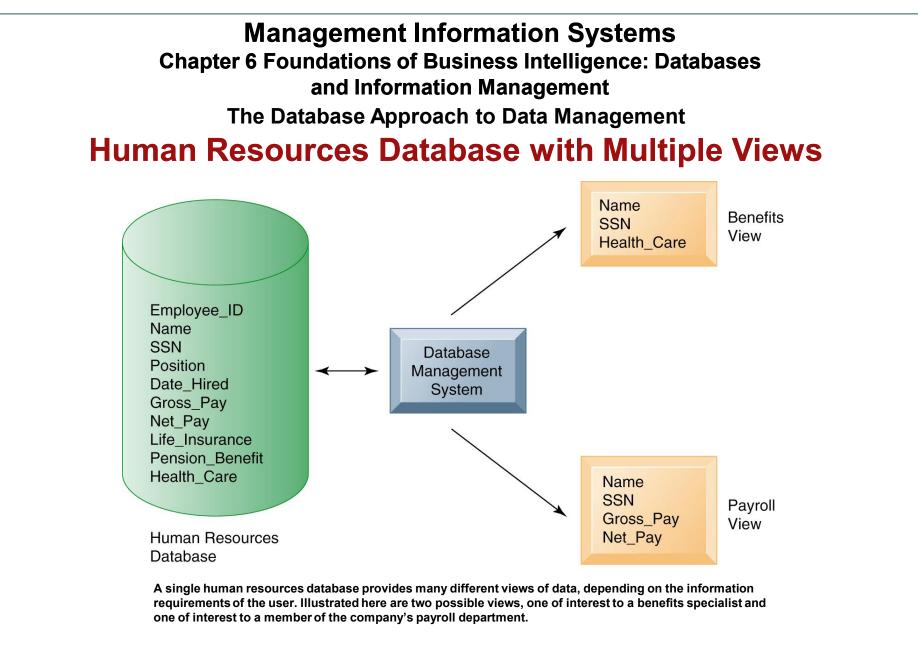
A computer system organizes data in a hierarchy that starts with the bit, which represents either a 0 or a 1. Bits can be grouped to form a byte to represent one character, number, or symbol. Bytes can be grouped to form a field, and related fields can be grouped to form a record. Related records can be collected to form a file, and related files can be organized into a database. Management Information Systems Chapter 6 Foundations of Business Intelligence: Databases and Information Management Organizing Data in a Traditional File Environment

- Problems with the traditional file environment (files maintained separately by different departments)
 - ^{*} Data redundancy and inconsistency
 - ["] Data redundancy: Presence of duplicate data in multiple files
 - ["] Data inconsistency: Same attribute has different values
 - ["] Program-data dependence:
 - When changes in program requires changes to data accessed by program
 - Lack of flexibility
 - Poor security
 - ["] Lack of data sharing and availability

Organizing Data in a Traditional File Environment

Traditional File Processing

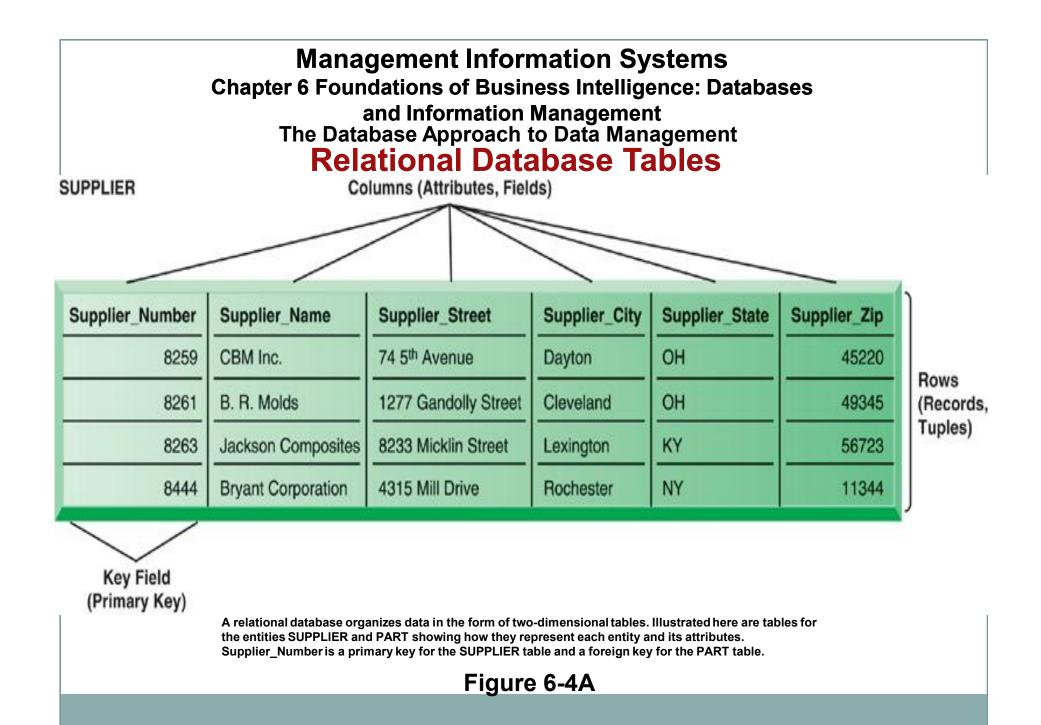
The use of a traditional approach to file processing encourages each functional area in a corporation to develop specialized applications and files. Each application requires a unique data file that is likely to be a subset of the master file. These subsets of the master file lead to data redundancy and inconsistency, processing inflexibility, and wasted storage resources.


["] Database

Collection of data organized to serve many applications by centralizing data and controlling redundant data

DataBase Management System (DBMS)

- ⁷ Interfaces between application programs and physical data files
- ⁷ Separates logical and physical views of data
- Solves problems of traditional file environment
 - Controls redundancy


 - ["] Uncouples programs and data
 - ["] Enables organization to central manage data and data security

The Database Approach to Data Management

["] Relational DBMS

- ⁷ Represent data as two-dimensional tables called relations or files
- ["] Each table contains data on entity and attributes
- **Table**: grid of columns and rows
 - **Rows (tuples):** Records for different entities
 - " Fields (columns): Represents attribute for entity
 - " Key field: Field used to uniquely identify each record
 - " Primary key: Field in table used for key fields
 - Foreign key: Primary key used in second table as look-up field to identify records from original table

The Database Approach to Data Management

Relational Database Tables (cont.)

PART

Part_Number	Part_Name	Unit_Price	Supplier_Number
137	Door latch	22.00	8259
145	Side mirror	12.00	8444
150	Door molding	6.00	8263
152	Door lock	31.00	8259
155	Compressor	54.00	8261
178	Door handle	10.00	8259
Primary Key			Foreign Key
	Figu	re 6-4B	

- Operations of a Relational DBMS
- ["] Three basic operations used to develop useful sets of data
 - SELECT: Creates subset of data of all records that meet stated criteria
 - JOIN: Combines relational tables to provide user with more information than available in individual tables
 - **PROJECT**: Creates subset of columns in table, creating tables with only the information specified

The Database Approach to Data Management

The Three Basic Operations of a Relational DBMS

PART

Part_Number	Part_Name	Unit_Price	Supplier_Number
137	Door latch	22.00	8259
145	Side mirror	12.00	8444
150	Door molding	6.00	8263
152	Door lock	31.00	8259
155	Compressor	54.00	8261
178	Door handle	10.00	8259

SUPPLIER

	Supplier_Number	Supplier_Name	Supplier_Street	Supplier_City	Supplier_State	Supplier_Zip
	8259	CBM Inc.	74 5 th Avenue	Dayton	ОН	45220
ĺ	8261	B. R. Molds	1277 Gandolly Street	Cleveland	ОН	49345
	8263	Jackson Components	8233 Micklin Street	Lexington	КҮ	56723
ľ	8444	Bryant Corporation	4315 Mill Drive	Rochester	NY	11344

Select Part_Number = 137 or 150

Part_Number	Part_Name	Supplier_Number	Supplier_Name
137	Door latch	8259	CBM Inc.
150	Door molding	8263	Jackson Components

Project selected columns

The select, project, and join operations enable data from two different tables to be combined and only selected attributes to be displayed.

Join by Supplier_Number

Object-Oriented DBMS (OODBMS)

- Stores data and procedures as objects
- Capable of managing graphics, multimedia, Java applets
- ["] Relatively slow compared with relational DBMS for processing large numbers of transactions
- *Hybrid object-relational DBMS*: Provide capabilities of both OODBMS and relational DBMS

Capabilities of Database Management Systems

- Data definition capability: Specifies structure of database content, used to create tables and define characteristics of fields
- Data dictionary: Automated or manual file storing definitions of data elements and their characteristics
- Data manipulation language: Used to add, change, delete, retrieve data from database
 - Structured Query Language (SQL)
 - " Microsoft Access user tools for generation SQL
- Many DBMS have report generation capabilities for creating polished reports (Crystal Reports)

The Database Approach to Data Management

Microsoft Access Data Dictionary Features

)"	Home Create External Data Database Tools Desk		-		
	Primary Builder Test Validation Key Tools				
	SUPPLIER	×			
	Field Name Data Type	Description			
	Supplier_Number AutoNumber	Supplier Identification Number			
	Supplier_Name Text	Supplier Name			
	Supplier Street Text	Supplier Street Address			
	Supplier City Text	Supplier City			
	Supplier State Text	Supplier State			
	Supplier Zip Text	Supplier Zip Code			
		Field Properties			
Field Properties					
	Field Size 50	*			
	Format				
	Input Mask				
	Caption Default Value				
	Validation Rule	A field name can be up to 64 characters long			
	Validation Text	including spaces. Press F1 for help on field			
	Required Yes	names.			
	Allow Zero Length No Indexed No				
	Unicode Compression Yes				
	BME Mode No Control				
	IME Sentence Mode None				
	Smart Tags				

Figure 6-6

Microsoft Access has a rudimentary data dictionary capability that displays information about the size, format, and other characteristics of each field in a database. Displayed here is the information maintained in the SUPPLIER table. The small key icon to the left of Supplier_Number indicates that it is a key field.

The Database Approach to Data Management

Example of an SQL Query

SELECT PART.Part_Number, PART.Part_Name, SUPPLIER.Supplier_Number, SUPPLIER.Supplier_Name FROM PART, SUPPLIER WHERE PART.Supplier_Number = SUPPLIER.Supplier_Number AND Part_Number = 137 OR Part_Number = 150;

Illustrated here are the SQL statements for a query to select suppliers for parts 137 or 150. They produce a list with the same results as Figure 6-5.

The Database Approach to Data Management

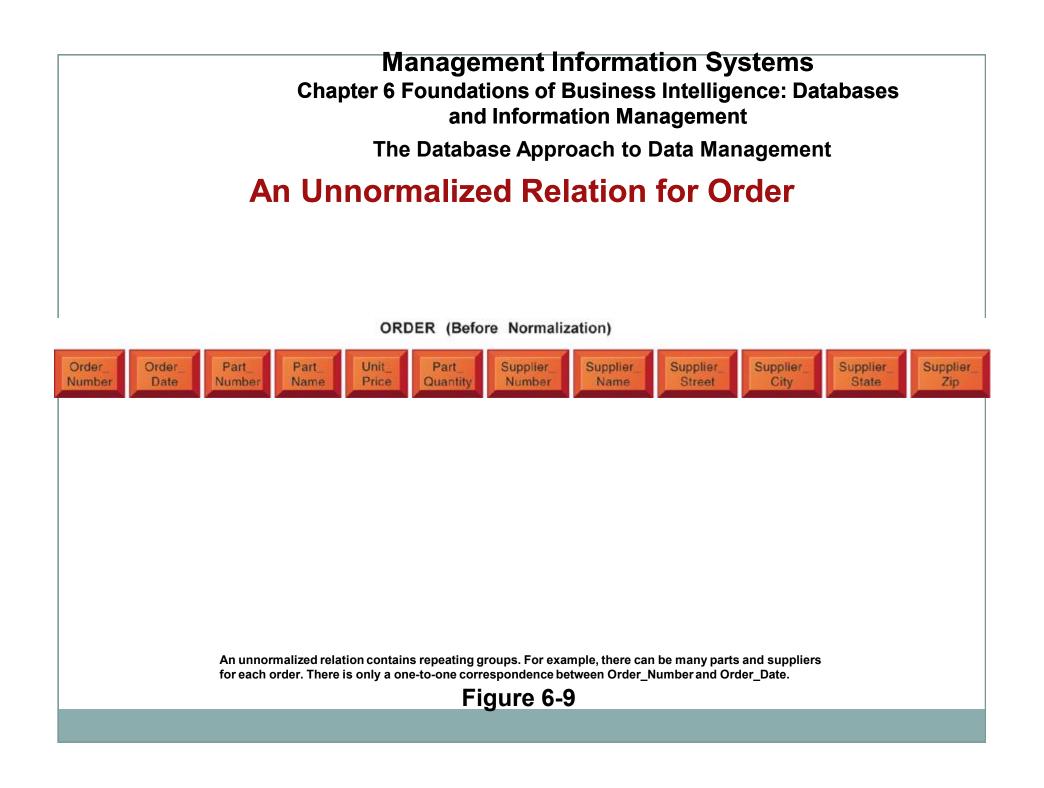
An Access Query

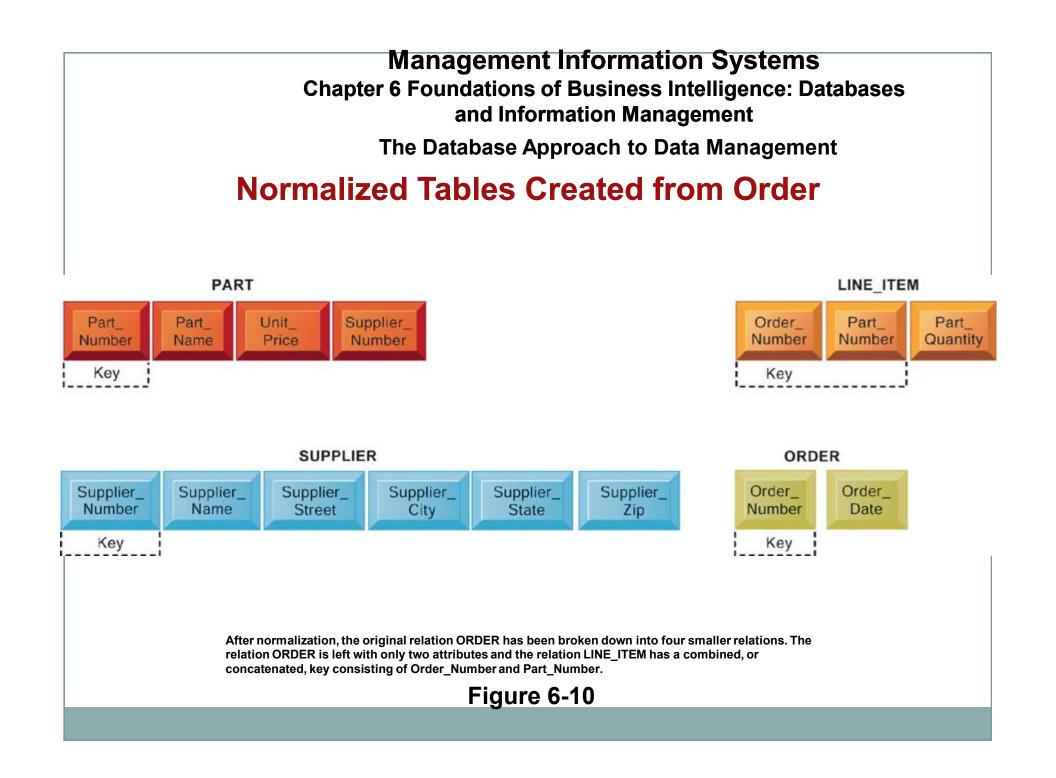
PAR	T Part_Number Part_Name Unit_Price Supplier_Number		VPPLIER Supplier_Number Supplier_Name Supplier_Street Supplier_City Supplier_State Supplier_Zip		
Field: Table:	Part_Number MART	Part_Name PART	Supplier_Number SUPPLIER	Supplier_Name SUPPLIER	
Sort: Show: Criteria: or:	137 Or 150				

Illustrated here is how the query in Figure 6-7 would be constructed using query-building tools in the Access Query Design View. It shows the tables, fields, and selection criteria used for the query.

The Database Approach to Data Management

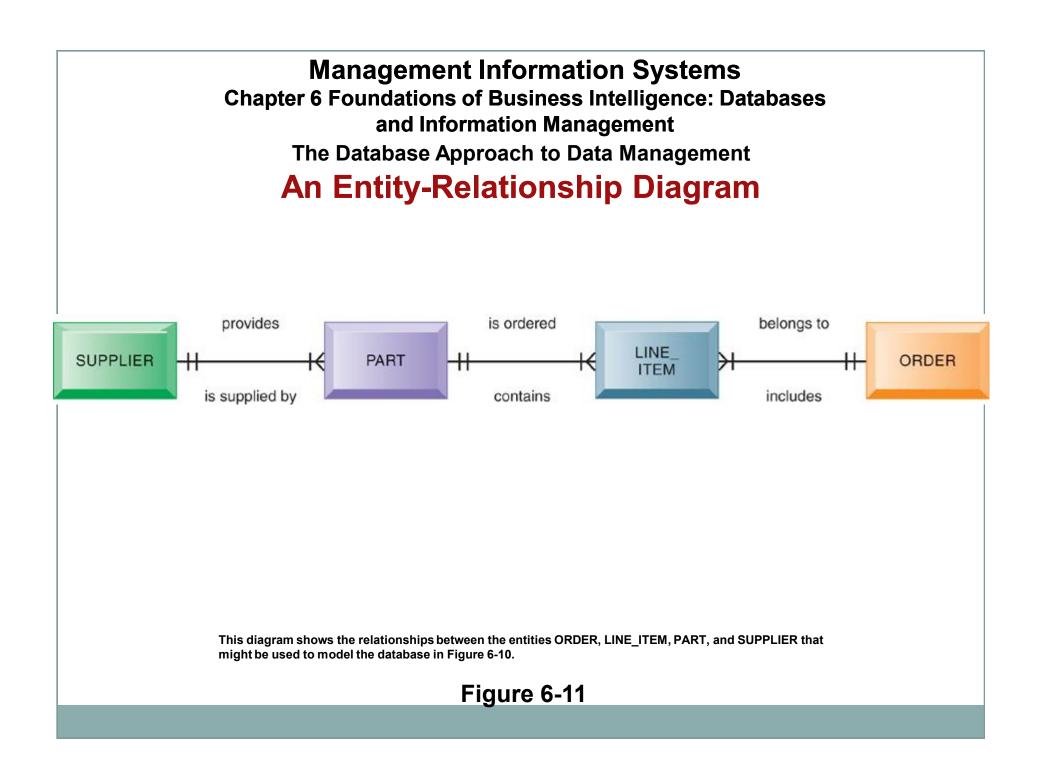
Designing Databases


- Conceptual (logical) design: abstract model from business perspective
- Physical design: How database is arranged on direct-access storage devices

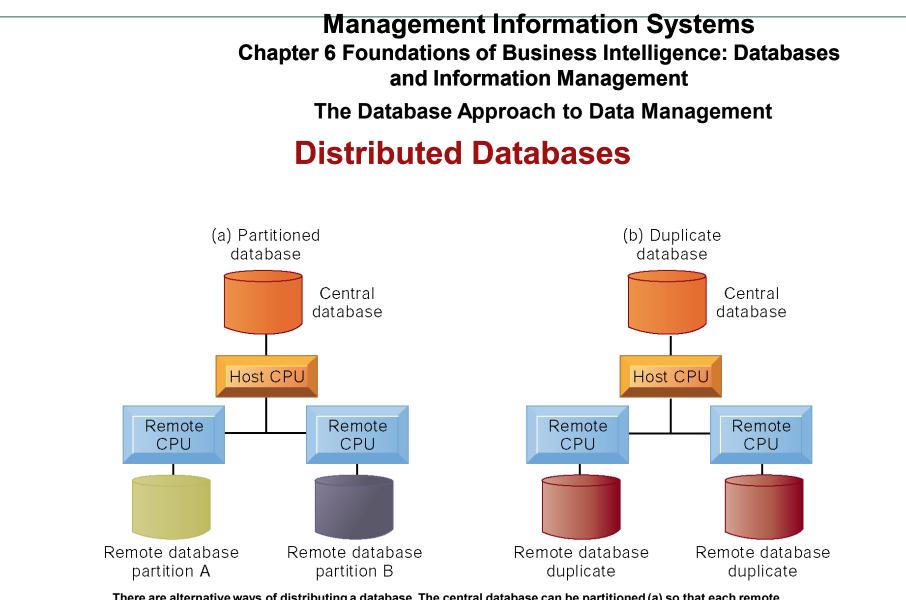

Design process identifies

- ["] Relationships among data elements, redundant database elements
- Most efficient way to group data elements to meet business requirements, needs of application programs

Normalization


Streamlining complex groupings of data to minimize redundant data elements and awkward many-to-many relationships

Entity-relationship diagram


- ⁷ Used by database designers to document the data model
- ⁷ Illustrates relationships between entities
- Distributing databases: Storing database in more than one place
 - " Partitioned: Separate locations store different parts of database
 - **Replicated**: Central database duplicated in entirety at different locations

The Database Approach to Data Management

Distributing databases

- ⁷ Two main methods of distributing a database
 - **Partitioned**: Separate locations store different parts of database
 - **Replicated**: Central database duplicated in entirety at different locations
- Advantages
 - Reduced vulnerability
 - Increased responsiveness
- **Drawbacks**
 - Departures from using standard definitions
 - ⁷ Security problems

There are alternative ways of distributing a database. The central database can be partitioned (a) so that each remote processor has the necessary data to serve its own local needs. The central database also can be replicated (b) at all remote locations.

Using Databases to Improve Business Performance and Decision Making

- Wery large databases and systems require special capabilities, tools
 - " To analyze large quantities of data
 - To access data from multiple systems
- " Three key techniques
 - Data warehousing
 - ⁷ Data mining
 - ⁷ Tools for accessing internal databases through the Web